Proof of L'Hospital's Rule

Theorem: Suppose f'(x), g'(x) exist and $g'(x) \neq 0$ for all x in an interval (a, b].

If
$$\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x)$$
 and $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ exists then $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$.

Proof: We may assume that f(a) = 0 = g(a) (since the limit is not affected by the value of the function at *a*). Also $g(b) \neq 0$, else g'(x) = 0 at some $x \in (a, b)$ by Rolle's Theorem.

Define $h(x) = f(x) - \frac{f(b)}{g(b)}g(x)$, then h(a) = 0 = h(b), and h is continuous on [a, b] and $h'(x) = f'(x) - \frac{f(b)}{g(b)}g'(x)$ exists on (a, b).

By Rolle's Theorem there exist $x \in (a, b)$ such that h'(x) = 0, hence $\frac{f'(x)}{g'(x)} = \frac{f(b)}{g(b)}$.

Since a < x < b, it follows that $\lim_{b \to a^+} \frac{f(b)}{g(b)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$.

The theorem can be adapted for $x \to a^-$, $x \to a$, $x \to \pm \infty$, or $\lim f(x) = \pm \infty = \lim g(x)$.

It does **not** apply e.g. if $x \to 0^+$, $f(x) = 1/x + \sin(1/x)$ and g(x) = 1/x (can you see why?)